Tag Archives: Google Android

Responding to the Meltdown and Spectre Vulnerabilities

=======================
Please scroll down for more updates to this original post.
=======================
====================
Update: 23rd May 2018:
====================
For information on the Spectre NG vulnerabilities please refer to this new blog post

Thank you.

=======================
Original Post:
=======================
Earlier in January updates for Linux, Apple and Windows were made available to work towards addressing the 3 security vulnerabilities collectively known as Meltdown and Spectre.

Why should these vulnerabilities be considered important?
I’ll provide a brief summary of the two categories of vulnerabilities:

Meltdown (CVE-2017-5754): This is the name of the vulnerability discovered that when exploited by an attacker could allow an application running with standard privileges (not root or elevated privileges) to read memory only intended for access by the kernel.

Spectre (Variant 1: CVE-2017-5753 ; Variant 2: CVE-2017-5715): This is a category of two known vulnerabilities that erode the security boundaries that are present between applications running on a system. Exploitation can allow the gathering of information from applications which could include privileged information e.g. usernames, password and encryption keys etc. This issue can be exploited using a web browser (e.g. Apple Safari, Mozilla Firefox, Google Chrome, Microsoft Edge (or IE) by using it to record the current time at very short intervals. This would be used by an attacker to learn which memory addresses were cached (and which weren’t) allowing the attacker to read data from websites (violating the same-origin policy) or obtain data from the browser.

Browser vendors have responded by reducing the precision of JavaScript timing and making it more unpredictable while other aspects of JavaScript timing (using the SharedArrayBuffer feature) have been disabled.

More in-depth (while still being less technical) descriptions of these issues are available here , here and here.

How can I protect myself from these vulnerabilities?
Since these vulnerabilities are due to the fundamental architecture/design of modern CPUs; it is not possible to fully address them. Instead a combination of software fixes and microcode updates (defined) is more a viable alternative than re-designing the established architecture of modern CPUs.

In-depth lists of updates available from multiple vendors are available here and here. I would suggest glancing at the affected vendors and if you own a device/product from them; checking if you are affected by these vulnerabilities. A list of BIOS (defined) updates from multiple vendors are available here. Google Chrome has a Site Isolation mode that can mitigate these vulnerabilities which will be more comprehensively addressed in Chrome version 64 scheduled for release last this month.

At this time my systems required updates from Google, Mozilla, Microsoft, Apple, VMware, Asus, Lenovo and Nvidia. Many of many existing desktops are unlikely to receive microcode and BIOS updates due to be more than 3 years old. However my Windows 10 laptop has received a BIOS update from the manufacturer.

Are there disadvantages to installing these updates?
While these updates increase security against these vulnerabilities; performance issues and stability issues (Intel and AMD) after the installation of these updates have been reported. These vary in severity but according to Intel and Microsoft the updates will be refined/optimised over time.

Benchmarks (for desktops) made available by TechSpot show negligible impact on most tasks that would stress a CPU (defined). However any work that you perform which makes of large files e.g. databases may be significantly impacted by the performance impact these updates have when accessing files on disk (mechanical and solid state). For laptops the slowdown was felt across almost all workload types. Newer and older silicon were inconsistently impacted. At times even some Intel 8th generation CPUs were impacted more than 5th generation CPUs.

Details of the anticipated performance impact for Linux, Apple macOS (and iOS) and Windows are linked to. Further reports of reduced performance from Intel and Apple devices have also been recorded. Further details of a feature known as PCID (Process-Context Identifiers) within more recent CPUs which will help reduce the performance impact are provided here. For Intel CPUs, 4th generation Core CPUs and later should include it but any CPU manufactured after 2011 should have it (one of my CPUs; a Core i7 2600K has this feature, verified using Sysinternals Coreinfo). A full list of Intel CPUs affected by these vulnerabilities is here.

Conclusion:
With the widely reported stability and performance issues present it is your decision if you install the necessary updates now or wait until further refinements. If you experience issues, please report them to the manufacturers where possible and within online forums if not. More refined updates will only be created if a need to do so is established.

I’m in the process of updating my systems but will benchmark them before and after each updates to determine an impact and make a longer term decision to keep the updates or uninstall them until further versions become available. I’ll update this post as I gather more results.

=======================
Update: 16th January 2018:
=======================
A newly released free utility from Gibson Research (the same website/author as the well-known ShieldsUp firewall tester) named InSpectre can check if your Windows system has been patched against Meltdown and Spectre and can give an indication of how much the performance of your system will be affected by installing and enabling the Windows and/or the BIOS updates.

Please note: I haven’t tried this utility yet but will this weekend (it will help with the tests I’m carrying out (mentioned above). I’ll update this post when I have tried out this utility.

Thanks again.

=======================
Update: 24th January 2018:
=======================
As promised I gathered some early results from a selection of CPUs and the results for all but recent CPUs are evidence they will experience a potentially noticeable performance drop:

====================
CPUs supporting PCID (obtained using Sysinternals Coreinfo):
Intel Core i7 Extreme 980X @ 3.33 GHz
Intel Core i7 2600K @ 3.8 GHz
Intel Core i5 4590T @ 3.3 GHz
Intel Core i7 6500U (laptop CPU) @ 2.5 GHZ

CPUs supporting INVPCID (obtained using Sysinternals Coreinfo):
Intel Core i5 4590T @ 3.3 GHz
Intel Core i7 6500U (laptop CPU) @ 2.5 GHZ
====================

Explanations of the purpose and relevance of the PCID and INVPCID CPU instructions are available from this Ars Technica article. The results from InSpectre only show positive results when both PCID and INVPCID are present backing up the observations within the above linked to Ars Technica article (that the updates take advantage of the performance advantages of these instructions when both are present).

The results from InSpectre back up these findings by stating that the 980X and 2600K will not deliver high performance protection from Meltdown or Spectre. Since my PCs are mainly used for more CPU intensive tasks (rather than disk intensive) e.g. games and Folding@Home; I still don’t expect too much of a performance decrease. The older CPUs are due for replacement.

You may ask; “why am I so concerned with the performance impact of these updates?” The answer is that significant time and investment has been made into the above systems for them to perform at peak performance for the intended tasks I use them for. Performance and security are both very important to me and I believe there should only be a small trade off in performance for better security.

My next step will be to benchmark the CPU, hard disk and GPU of each system before and after installing each update. I will initially do this for the 6500U and 2600K systems and provide these results. The categories of updates are listed below. I will keep you informed of my findings.

Thank you.
====================
Update 1: Software updates from Microsoft for Meltdown and Spectre
Update 2: Firmware update (where available)
Update 3: Nvidia / AMD GPU driver update
====================

=======================
Update: 13th February 2018:
=======================
Sorry for the long delay (I was travelling again for my work). The above benchmarking is now taking place and I will make the results available as soon as possible. Thanks for your understanding.

=======================
Update: 27th February 2018
=======================
Earlier last week Intel made available further microcode updates for more CPUs. These updates seek to address variant 2 of the Spectre vulnerability (CVE-2017-5715). Updates are now available for the CPUs listed below.

As before, please refer to the manufacturer of your motherboard of your system for servers, desktops and laptops or the motherboard manufacturer for any custom built systems you may have to determine if these updates have been made available for your specific systems. Further information for corporate system administrators containing details of the patching process is available within this link (PDF):

  • Kaby Lake (Intel 7th Generation Core CPUs)
  • Coffee Lake (Intel 8th Generation Core CPUs)
  • Further Skylake CPUs (Intel 6th Generation Core CPUs)
  • Intel Core X series (Intel Core i9 CPUs e.g. in the 7900 and 7800 model range)
  • Intel Xeon Scalable (primarily targeted at data centres)
  • Intel Xeon D (primarily targeted at data centres)

Information on patches now available for OpenBSD and FreeBSD are located within the following links:

OpenBSD:
OpenBSD mailing list
The Register: OpenBSD Patch now Available

FreeBSD:
FreeBSD Wiki
Softpedia: Spectre and Meltdown mitigations now available

=======================
Update: 1st April 2018
=======================
As vendors have responded to these vulnerabilities; updates have been released for many products. I will describe these updates in more detail below. Apologies if I have omitted any, this isn’t intentional but the list below should still be useful to you:

=======================
Google ChromeOS:
=======================
Following the release of ChromeOS 64 in February which provided updates against the Meltdown and Spectre vulnerabilities, ChromeOS 65 includes further mitigations against these vulnerabilities including the more efficient Retpoline mitigation for Spectre variant 2.

=======================
Sony Xperia:
=======================
In late February Sony made available updates which include mitigations for Meltdown and Spectre for their Xperia X and Xperia X Compact phones which brings the build number to 34.4.A.2.19

=======================
Microsoft Issues Microcode Updates:
=======================
As previously mentioned when this blog post was first published; updates for the Meltdown and Spectre vulnerabilities are made up of software updates, microcode updates and firmware (BIOS updates) and GPU drivers.

Due to the complexity of updating the firmware of computer systems which is very specific and potentially error prone (if you apply the wrong update to your device it can render it useless, meaning it will need to be repaired/replaced (which is not always possible) Microsoft in early March began to issue microcode driver updates (as VMware describes they can be used as substitutes for firmware updates). Microcode updates have been issued in the past to address CPU reliability issues when used with Windows.

=======================
Intel Firmware Updates:
=======================
As with previous microcode updates issued by Intel in late February; these updates seek to resolve variant 2 of the Spectre vulnerability (CVE-2017-5715).

While Intel has issued these updates; they will be made available separately by the manufacturer of your motherboard of your system for servers, desktops and laptops or the motherboard manufacturer for any custom built systems you may have. You will have to determine from the updates those vendors issue if they are available for the products that you own.

Unfortunately not all systems will receive these updates e.g. most recent system was assembled in 2014 and has not received any updates from the vendor; the vendor has issued updates on their more recent motherboards. Only my 2016 laptop was updated. This means that for me; replacing the systems gradually is the only means of addressing variant 2 of the Spectre vulnerability.

Intel’s updates are for the Broadwell (5th generation CPUs i.e. 5000 series) and Haswell (4th generation CPUs i.e. 4000 series).

=======================
Microsoft Surface Pro:
=======================
Earlier this week Microsoft released firmware updates for their Surface Pro which mitigate the Meltdown and Spectre vulnerabilities. This link provides further details and how to install the updates.

=======================
Microsoft Issues Further Security Update on the 29th March:
=======================
As noted in my separate post; please refer to that post for details of a security update for Windows 7 SP1 64 bit and Windows Server 2008 R2 SP1 64 bit that resolve a regression (an un-intentional coding error resulting in a previously working software feature no longer working, alternative definition here) which introduced an additional elevation of privilege (defined) security vulnerability in the kernel (defined) of those Windows versions.

=======================
Microsoft Offers Bug Bounty for Meltdown and Spectre vulnerabilities:
=======================
Microsoft have announced bug bounties from $5000 to $250,000 to security researchers who can locate and provide details of exploits for these vulnerabilities upon Windows, Azure and Microsoft Edge.

If such a programme is successful it could prevent another instance of needing to patch further related vulnerabilities after the issues have been publicly disclosed (defined). This is sure to assist the system administrators of large organisations who currently in the process of deploying the existing updates or who may be testing systems on a phased basis to ensure performance is not compromised too much.

Further details are available from this link.

=======================
Update: 6th April 2018
=======================
Earlier this week, Intel issued a further progress update for the deployment of further microcode for their CPUs.

A further 5 families of CPUs have now completed testing and microcode updates are available. These families are:

    • Arrandale
    • Clarkdale
    • Lynnfield
    • Nehalem
    • Westmere

==================
However a further 9 families will not receive such updates for the reasons listed below. Those families are:

      • Micro-architectural characteristics that preclude a practical implementation of features mitigating [Spectre] Variant 2 (CVE-2017-5715)
      • Limited Commercially Available System Software support
      • Based on customer inputs, most of these products are implemented as “closed systems” and therefore are expected to have a lower likelihood of exposure to these vulnerabilities.

==================

      • Bloomfield
      • Clarksfield
      • Gulftown
      • Harpertown Xeon
      • Jasper Forest
      • Penryn
      • SoFIA 3GR
      • Wolfdale
      • Yorkfield

This announcement from Intel means my Intel Core i7 Extreme 980X (from 2010) won’t receive an update. This system isn’t used very much on the internet and so the impact is limited. I am hoping to replace this system in the near future too.

Recommendations:

Please review the updated PDF made available by Intel (I can upload the PDF to this blog if Intel place it behind an account which requires sign in. At this time the PDF link still works).

As before; please monitor the websites for the manufacturer of your system for servers, desktops and laptops or the motherboard manufacturer for any custom built systems you may have to determine if these updates have been made available for your specific systems.

Thank you.

==================
BranchScope Vulnerability Disclosed:
In a related story; four security researchers from different universities responsibly disclosed (defined) a new side channel attack affecting Intel CPUs. This attack has the potential to obtain sensitive information from vulnerable systems (a similar result from the existing Meltdown and Spectre vulnerabilities).

Further details of this attack named “BranchScope” are available in this Softpedia article and this paper from the researchers. Within the above article Intel responded to this attack stating that this vulnerability is similar to known side channel and existing software mitigations (defined) are effective against this vulnerability. Their precise wording is provided below.

Thank you.

==================
An Intel spokesperson has provided the following statement:

“We have been working with these researchers and have determined the method they describe is similar to previously known side channel exploits. We anticipate that existing software mitigations for previously known side channel exploits, such as the use of side channel resistant cryptography, will be similarly effective against the method described in this paper. We believe close partnership with the research community is one of the best ways to protect customers and their data, and we are appreciative of the work from these researchers.”
==================

=======================
Update: 13th April 2018
=======================
AMD have issued microcode (defined) updates for Windows 10 Version 1709 to enhance the protection of their customer’s against variant 2 (CVE-2017-5715) of the Spectre vulnerability. Further details of these updates are available within these KB articles: KB4093112 and KB3073119

Thank you.

=======================
Update: 18th May 2018
=======================
Please refer to the beginning of the May and April security update summaries for further updates related to addressing Spectre variant 2 (v2).

 

WPA2 KRACK Vulnerability: What you need to know

Last Sunday, the early signs of a vulnerability disclosure affecting the extensively used Wi-Fi protected access (WPA2) protocol were evident. The next day, disclosure of the vulnerability lead to more details. The vulnerability was discovered by  two researchers Mathy Vanhoef and Frank Piessens of the Katholieke Universiteit Leuven (KU Leuven) while examining OpenBSD’s implementation of the WPA2 four way handshake.

Why should this vulnerability be considered important?
On Monday 16th October, the KRACK (key re-installation attacks) vulnerability was disclosed. This vulnerability was found within the implementation of the WPA2 protocol rather than any single device making it’s impact much more widespread. For example, vulnerable devices include Windows, OpenBSD (if not already patched against it), Linux, Apple iOS, Apple macOS and Google Android.

If exploited this vulnerability could allow decryption, packet replay, TCP connection hijacking and if WPA-TKIP (defined) or GCMP (explained) are used; the attacker can inject packets (defined) into a victim’s data, forging web traffic.

How can an attacker exploit this vulnerability?
To exploit the vulnerability an attacker must be within range of a vulnerable Wi-Fi network in order to perform a man in the middle attack (MiTM)(defined). This means that this vulnerability cannot be exploited over the Internet.

This vulnerability occurs since the initial four way handshake is used to generate a strong and unique key to encrypt the traffic between wireless devices. A handshake is used to authenticate two entities (in this example a wireless router and a wireless device wishing to connect to it) and to establish the a new key used to communicate.

The attacker needs to manipulate the key exchange (described below) by replaying cryptographic handshake messages (which blocks the message reaching the client device) causing it to be re-sent during the third step of the four way handshake. This is allowed since wireless communication is not 100% reliable e.g. a data packet could be lost or dropped and the router will re-send the third part of the handshake. This is allowed to occur multiple times if necessary. Each time the handshake is re-sent the attacker can use it to gather how cryptographic nonces (defined here and here) are created (since replay counters and nonces are reset) and use this to undermine the entire encryption scheme.

How can I protect myself from this vulnerability?
AS described in this CERT knowledge base article.; updates from vendors will be released in the coming days and weeks. Apple (currently a beta update) and Microsoft already have updates available. OpenBSD also resolved this issue before the disclosure this week.

Microsoft within the information they published for the vulnerability discusses how when a Windows device enters a low power state the vulnerable functionality of the wireless connection is passed to the underlying Wi-Fi hardware. For this reason they recommend contacting the vendor of that Wi-Fi hardware to request updated drivers (defined).

Links to affected hardware vendors are available from this ICASI Multi-Vendor Vulnerability Disclosure statement. Intel’ security advisory with relevant driver updates is here. The wireless vendor, Edimax also posted a statement with further updates to follow. A detailed but easy to use list of many vendors responses is here. Since I use an Asus router, the best response I could locate is here.

======
Update: 21st October 2017:
Cisco have published a security advisory relating to the KRACK vulnerability for its wireless products. At the time of writing no patches were available but the advisory does contain a workaround for some of the affected products.
======

The above updates are software fixes but updates will also be made available for devices in the form of firmware updates e.g. for wireless routers, smartphones and Internet of Things (IoT)(defined) devices. For any wireless devices you own, please check with the manufacturer/vendor for available updates with the above CERT article and vendor response list detailing many of the common vendors.

Thank you.

BlueBorne : Bluetooth Vulnerability Explained

Researchers from the security firm Armis have discovered a set of eight security vulnerabilities within the Bluetooth (defined) communications technology and responsibly disclosed (defined) them to affected device manufacturers. These are not present in the protocol layer of Bluetooth but within the implementation layer of Bluetooth which “bypasses the various authentication mechanisms, and enabling a complete takeover of the target device” (source). An estimated 5.3 billion devices are thought to be vulnerable ranging from computers tablets, smartphone, TVs, watches to Internet of Things (IoT) (defined) medical devices. This set of vulnerabilities is known as “BlueBorne”.

What is BlueBorne and why is it important?
Exploitation of the BlueBorne vulnerabilities allows the complete compromise of the vulnerable device and does not require the vulnerable device be paired (defined) with the attacking device.

Once exploited the vulnerabilities allow the attacker to conduct remote code execution (defined: the ability for an attacker to remotely carry out any action of their choice on your device)) and man in the middle attacks (defined). To begin the attack, the attacker does not need for the user of the vulnerable device to have taken any action.

These vulnerabilities are particularly severe since Bluetooth is less secured on a corporate network than for example, the proxy server (defined) providing internet access making spreading from advice to device in a worm (defined) like fashion (theoretically) possible. The Bluetooth protocol often runs with high privilege on devices and is not usually considered a potential entry point into a network. Air gapped systems (defined) are also potentially vulnerable.

How can I protect myself from these issues?
Software updates for some devices are listed here (for Google, Linux and Microsoft devices). Recent Apple devices were found not to be vulnerable. A full list of affected devices and the software updates to protect them are listed here and will be updated by Armis.

For users of Google Android devices, they can check if their device is vulnerable by downloading the BlueBorne Android app. Disabling Bluetooth if you are not using it and only leaving it enabled for the time you are using it are also good security practices. Once your devices are updated, you should be able to resume normal Bluetooth usage. Please not that not all devices will or can be updated due to end of support lifecycles, newer products and product limitations. It is estimated approximately 2 billion devices will not receive software updates to resolve these issues.

Thank you.

“Juice Jacking” remains a threat in 2017

While smartphones offer speedy access to the internet and convenient online access, the battery life of smartphones is a constant concern. Public phone charging stations at airports, on-board planes, public transport and parks are now available to help with this.

However; Authentic8 employee Drew Paik at the RSA security conference during the week of the 13th February 2017 highlighted the security risks associated with public charging points. He explained the data stored on the phone is potentially accessible to an attacker who provides a rogue charging station. An attacker may use this opportunity to steal your data or install malware. At the conference he installed a charging station at the Authentic8 booth and approximately 80% of people connected their phones without asking if the charging port was safe?

How can I protect myself from this threat?
As this linked to article highlights this vulnerability originates from 2011 (known as “juice jacking”) with 2016 debuting a similar vulnerability known as “video jacking”. Google Android phones provide a charge only option but Apple iPhones do not appear to offer this option.

If you are with mobile devices and wish to charge them safely you should use a portable USB battery pack or purchase USB cables which charge devices only rather than also allowing data access.

Thank you.

Protecting Your Smart TV From Ransomware

In mid-2016 a news article detailed the possibility for Android powered Smart TVs to be infected by ransomware. Last month that prediction came true.

To recover the affected TV, you should reset it to factory default settings. You may need to contact the manufacturer if they don’t provide the steps to perform the reset as part of the devices documentation.

With 2017 predicted to break the record set in 2016 for ransomware, occurrences such as this will likely become more common.

Unfortunately, TV manufacturers are unlikely to pre-harden vulnerable devices before shipping them due to compatibility concerns and increased costs (during manufacturing and later support costs). To increase use of their after sales service they are again unlikely to publish the key sequences or button presses to perform a factory reset.

The ransomware encountered by this software developer was “just” a screen locker. It didn’t also try to encrypt any connected USB drives. Separately, a Symantec security researcher published a helpful list of mitigations to protect against ransomware targeting Smart TVs.

Continuing the trend of protecting Internet of Things (IoT) devices (defined), I hope that you find the above mitigations useful. Please also refer to this previous blog post for more general advice on preventing ransomware infections on your everyday computing devices (non IoT devices).

Thank you.

Blog Post Shout Out: Creating Passwords and Internet Privacy

This blog post shout out will focus on both security and privacy related issues.

While there has recently been a renewed focus to phase out passwords, until that happens we need to continue to manage them.

The following article discusses (among other topics) managing passwords. It focuses on providing security while making it easier for users to remember them. It also raises doubts about the need for changing passwords so often and provides evidence to back this up.

All of this advice may useful if you are trying to create or update your corporate password policy to make it more user friendly while still maintaining security.

How to hack the hackers: The human side of cybercrime by M. Mitchell Waldrop (Nature Journal)

================================
In an effort to preserve your privacy you may be using a VPN (defined) connection when browsing the internet using your computer or mobile devices.

However as noted by F-Secure in this FAQ article, this may not be enough to fully protect your identity since some information (namely your real IP address) can still be leaked via WebRTC traffic. Within that FAQ article they provide advice on how to prevent this leak for the most common web browsers.
================================
Related to the above topic of VPNs, using public Wi-Fi hotspots isn’t a good idea if you want to preserve your privacy as this Kaspersky article demonstrates.

While a VPN can assist with preserving that privacy when using a public Wi-Fi, it isn’t a perfect solution. For example, apps installed on mobile devices can still leak data as discussed in this article.

However, it possible to better control such data leakage on Android and Apple iPhones. A guide to do this for Android is available here.

For an iPhone, you can open Setting -> Mobile data and change the settings according to your preference. However, when you connect to a public Wi-Fi hotspot all the network connections in use by the apps will begin new connections or resume existing connections.

To minimise the amount of data leaked you should use a VPN (as I have already discussed above) for your mobile device. In addition, you should use the Low Power Mode option of your iPhone from Settings -> Battery and change the setting. This setting change will halt background tasks, delete Wi-Fi access point associations, previous new emails being received and automatic downloads. More information on this setting is available from here.

Next, turn on your VPN (Settings -> General -> VPN). A list of popular VPN providers is available here.

Using the above steps will help to minimise the amount of data leaked if you are privacy conscious and use an Android powered device or an iPhone. Full disclosure: as you know I use an Android phone so I haven’t intentionally provided more information/discussion on the iPhone.

I hope that you find the above references useful in maintaining your security and privacy. Many thanks to a colleague (you know who you are) for contributing the advice on using VPNs with mobile devices.

Thank you.

Google Releases Security Updates for Android (April 2016)

In the first week of April; Google made available a scheduled security update for their Android smartphone operating system. Android devices with a security patch level of April 2, 2016 include all of the fixes within Google’s most recent security advisory.

The April updates resolve 39 security vulnerabilities more formally known as CVEs (defined) of the following severities:

====================
15x critical severity CVEs
16x high severity CVEs
8x moderate severity CVEs
====================

Why Should These Issues Be Considered Important?
On the 18th of March Google released an out of band (unscheduled) security update to resolve a local elevation of privilege (defined) vulnerability.

This vulnerability was present in the Android kernel (defined). This issue was used in a public exploit against a Google Nexus 5 and was detected by security firm Zimperium who then reported it to Google on March 15th.

This issue was assigned a critical severity rating since it escalates privileges on a vulnerable Android device which can lead to arbitrary code execution (instructions of an attacker choice can be carried out) as well as permanently compromising the device (which can only be resolved by re-flashing the device as described in a previous blog post).

Other critical issues resolved by this update were present in the DHCP (defined) service known as DHCPCD. This could have been exploited by an installed malicious app allowing an attacker to run (carry out) arbitrary code execution. The remaining critical issues involved the Qualcomm Performance Module and RF driver (defined). Exploitation would have allowed an attacker to run code with the same privileges as the Android kernel. Both of these issues if exploited would require re-flashing an affected device since they lead to a permanent device compromise.

Finally, 13 issues (of critical and high severity) that are related to the previous Stagefright vulnerabilities were also resolved. These vulnerabilities continue to arise due to the increased attention towards the MediaServer component of Android from security researchers after last year’s disclosure of the original Stagefright issue.


How Can I Protect Myself From These Issues?

Updates to resolve these issues were made available by Google on 4th of April 2016. Manufacturers such as Samsung/LG etc. received these updates on the 16th of March.

As mentioned by Sophos you may need to ask your device manufacturer or mobile carrier when this update will be made available to you. As discussed in a previous post regarding Android updates, please ensure to only apply updates from your mobile carrier or device manufacturer.

In my previous post discussing Android security updates; I mentioned that a single update to my Sony smartphone was made available on the 8th of March. At the time of writing I still have not received this update. As before, I hope that you are more successful with your phone receiving the appropriate update as soon as possible.

Thank you.