Tag Archives: AMD

Responding to the Intel Spoiler Vulnerability

====================
Updated: 20th March 2019
====================
TL DR:
The Intel Spoiler vulnerability is not as bad as predicted. Software developers should continue to use safer code development practices.

====================
After the disclosure earlier this month of this vulnerability Intel have provided further information on how it affects their microprocessors. They have clarified that the Spoiler exploit by itself does not reveal secret data and is not a speculative execution side channel method:

Other good news is that existing mitigations such as KPTI (kernel page table isolation) reduce the risk of leaking data across privilege levels. They again confirmed that side channel safe software development practices such as “ensuring execution time and control flows are identical regardless of secret data” will mitigate classic side channel methods enabled by the Spoiler exploit. Furthermore, they confirmed memory modules which are already mitigated against Rowhammer attacks remain protected against the Spoiler exploit.

Lastly AMD provided formal confirmation that their microprocessors are not vulnerable after preliminary findings suggested they weren’t vulnerable. AMD’s statement is available from this link.

Thank you.

====================
Original Post:
====================
Earlier this month a new vulnerability was disclosed in a research paper titled “Spoiler: Speculative load hazards boost Rowhammer and cache attacks”.

TL DR: Mitigating this newly disclosed vulnerability is the job of software developers to work around using safer code development practices. Mitigating this issue in hardware will take longer since current measures cause too much of a performance penalty.

Why should this vulnerability be considered important?
Using this new method; attackers are likely to find existing cache and memory Rowhammer attacks easier to carry out. In addition, JavaScript (defined) attacks which can take long periods of time may be shortened to mere seconds. The paper contains a cache prime and probe technique to leak sensitive data using JavaScript.

This Spoiler vulnerability can be used by attackers (who MUST have already compromised your system) to extract sensitive information from the systems memory (RAM). An attack does not require elevated privileges.

What CPUs (microprocessors / computer chips) are affected?
This vulnerability affects Intel processors only; first generation Intel Core (from early 2006) and later are affected. ARM and AMD processors are not affected. Any system with an Intel Core processor is affected regardless of the operating they are using namely Linux, Unix, Apple macOS and Windows can be all affected.

How does this vulnerability achieve the above results?
The security researchers who authored the paper found a vulnerability in the memory order buffer that can be used to gradually reveal information about the mappings of physical memory to non-privileged software processes (in other words; applications). This technique also affects virtual machine (VM) and sandboxed (defined) environments.

The technique works by understanding the relationship between virtual and physical memory by timing the speculative load and store operations to these areas while looking out for discrepancies which disclose the memory layout to you. With this information an attacker knows where to focus their efforts.

Intel’s proprietary implementation of the memory subsystem (memory disambiguation) is the root cause of the vulnerability. When a physical address conflict (the address/area is already in use) occurs, the algorithm leaks the access timings. The algorithm in the researcher’s words works as follows “Our algorithm, fills up the store buffer within the processors with addresses that have the same offset but they are in different virtual pages. Then, we issue a memory load that has the same offset similarly but from a different memory page and measure the time of the load. By iterating over a good number of virtual pages, the timing reveals information about the dependency resolution failures in multiple stages.”

How can this vulnerability be mitigated/patched?
This vulnerability lies within the memory disambiguation algorithm which won’t be trivial to resolve anytime soon. Since this vulnerability is not related to last years Spectre vulnerability; mitigations for that vulnerability don’t help here. Current Spoiler mitigations have too much of performance penalty. At this time, Intel has issued the following statement:

“Intel received notice of this research, and we expect that software can be protected against such issues by employing side channel safe development practices. This includes avoiding control flows that are dependent on the data of interest. We likewise expect that DRAM modules mitigated against Rowhammer style attacks remain protected. Protecting our customers and their data continues to be a critical priority for us and we appreciate the efforts of the security community for their ongoing research.”

The side channel safe development practices are linked to below:

Software Guidance for Security Advisories

Addressing Hardware Vulnerabilities

Thank you.

Vendors Respond to Spectre NG Vulnerabilities

====================
Update: 24th July 2018
====================
I have updated the list of vendor responses below to include further Red Hat versions and CentOS:

Red Hat Enterprise Linux 7:
https://access.redhat.com/errata/RHSA-2018:1629

CentOS 6:
https://lists.centos.org/pipermail/centos-announce/2018-July/022968.html

CentOS 7:
https://lists.centos.org/pipermail/centos-announce/2018-May/022843.html
====================

====================
Update: 19th June 2018
====================
Last Wednesday, the security news and troubleshooting website BleepingComputer published a table detailing the complete list of updates required to mitigate the Meltdown, Spectre and SpectreNG (also known as Spectre variant 4) vulnerabilities for all recent versions of Windows. This is very useful because I realise my previous blog post on Meltdown and Spectre was at times hard to follow (it has a lot of info within it).

As of Tuesday, 12th June Microsoft have released updates to address SpectreNG. While you can install these updates Microsoft have advised their security protections will not be enabled unless you choose to do so. This is due to the lower risk of SpectreNG and also given that enabling the security enhancements of these updates can lead to a performance penalty of up to 8% (as I detailed below).

Microsoft provide step by step advice and guidance if you wish to enable these updates within this security advisory. It is likely other OS vendors will take a similar approach e.g. Red Hat may also choose to distribute these updates but not enable them so as to work around the performance penalty.

For more information on the semi-related Intel Lazy Floating point vulnerability, please see my separate post.

Thank you.

====================
Original Post
====================
On Monday more details of these vulnerabilities were made available by affected vendors among them Red Hat, Google, Intel, IBM and Microsoft. There are two new vulnerabilities named:

Rogue System Register Read (Spectre Variant 3a) (CVE-2018-3640)

Speculative Store Bypass (SSB) (Spectre Variant 4) (CVE-2018-3639)

Why should these vulnerabilities be considered important?

Rogue System Register Read cannot be leveraged by an external attacker; they must instead log onto a vulnerable system and carry out further steps to exploit it. Once exploited the attacker may be able to obtain sensitive information by reading system parameters via side-channel analysis.

For Windows; successful exploitation of this vulnerability will bypass Kernel Address Space Layout Randomization (KASLR) protections. I have talked about ASLR (defined) before but provides this link more detail on kernel ASLR.

Google Project Zero’s Jann Horn and Microsoft’s Ken Johnson first reported Speculative Store Bypass. It can possibly be used by attacker externally (from the internet). I use the term “possibly” since the mitigations added to web browsers following Spectre variant 2 earlier this year will make it more difficult for an attacker to do so. Indeed, Intel rates the risk as “moderate.” This is a more serious vulnerability which may allow an attacker access to read privileged memory areas. An example would be a script running in one browser tab being able to read data from another browser tab.

Red Hat have made available a video more clearly explaining the Speculative Store Bypass (SSB) vulnerability.

How can I protect myself from these vulnerabilities?
At this time microcode updates are being developed by Red Hat, AMD, ARM, Intel, IBM and Microsoft. The affected products from many popular vendors are available from the following links. These vulnerabilities will not be addressed via software fixes but hardware fixes instead.

It is recommended to follow the best practice advice for these vulnerabilities as per the US-CERT namely:

1. Please refer to and monitor the links below for the updates from affected vendors.
2. Test these updates before deploying them widely
3. Ensure the performance impact (anticipated to be between 2 – 8%) is acceptable for the systems you manage/use.

These updates will ship with the mitigations disabled and if appropriate/acceptable for an affected system; the protection (along with its performance impact) can be enabled.

These updates are scheduled to be made available before the end of May. Cloud vendors (e.g. Amazon AWS, Microsoft Azure etc.) will also update their systems once the performance impact is determined and if deemed acceptable.

Thank you.

====================
AMD:
https://www.amd.com/en/corporate/security-updates

ARM:
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability

Cisco:
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20180521-cpusidechannel

IBM:
https://www.ibm.com/blogs/psirt/potential-impact-processors-power-family/

Intel:
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00115.html

Microsoft (full impact yet to be determined):
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/ADV180012

https://portal.msrc.microsoft.com/en-us/security-guidance/advisory/ADV180013

Red Hat:
https://access.redhat.com/security/cve/cve-2018-3639

Oracle:
https://blogs.oracle.com/oraclesecurity/processor-vulnerabilities-cve-2018-3640-and-cve-2018-3639

SUSE:
https://www.suse.com/de-de/support/kb/doc/?id=7022937

Ubuntu:
https://wiki.ubuntu.com/SecurityTeam/KnowledgeBase/Variant4

VMware ESXI, Fusion/Fusion Pro, Workstation/Workstation Pro and vCenter Server:
https://www.vmware.com/security/advisories/VMSA-2018-0012.html

https://kb.vmware.com/s/article/54951

https://kb.vmware.com/s/article/55111
====================

AMD Hardware Updates Are Imminent

A recent news article has now stated the necessary updates to resolve these vulnerabilities are nearing the end of their testing in advance of their release to wider industry and the public:

In addition, below I provide more background information on these vulnerabilities:

In second half of March, as you know AMD was made aware of several security vulnerabilities within their CPUs and mainboard products. In a controversial move; AMD were only provided with 1 day by the security company CTS Labs before more details of these vulnerabilities were publicly disclosed (defined).

Why should these vulnerabilities be considered important?
In contrast to the Meltdown and Spectre vulnerabilities, the vulnerabilities (listed below) are not as serious as Intel’s since an attacker must first compromise your computer system, obtain administrative access (defined) and then exploit the recently disclosed vulnerabilities. Attackers will still need to invest significant effort to take advantages of these vulnerabilities to develop an exploit in the first instance:

Very well written summaries of all five classes of vulnerabilities (Masterkey, PSP Privilege Escalation, Ryzenfall, Fallout and Chimera are available from this AMD blog post:

While these vulnerabilities are a concern; they will be easier to address than Meltdown and Spectre since they are due to programming errors rather than hardware design flaws. As noted in this Trail of Bits blog post; the Intel vulnerabilities required “previously unknown techniques and novel research advances to discover and exploit” while the AMD vulnerabilities “have been found in other embedded systems that have attempted to implement security features. They are the result of simple programming flaws, unclear security boundaries, and insufficient security testing”:

How can I protect myself from these vulnerabilities?
How AMD plans to mitigate these issues is also detailed in the blog post linked to above. These mitigations will likely appear as firmware updates (in the case of Masterkey) and operating system updates very similar to the approach taken by Intel to address their recently disclosed vulnerabilities.

Please monitor the website of the vendor who manufactured your system for pre-built systems/servers/laptops or the motherboard manufacturer for a custom built system for firmware updates.

If you experience issues after installing the updates, please report them to the manufacturers and/or AMD where possible and within online forums if not. More refined updates will only be created if a need to do so is established.

Thank you.

April 2018 Update Summary

====================
Update: 5th April 2018:
====================
On the 3rd of April, Microsoft released an out of band security update for the Microsoft Malware Protection Engine. Further details are available in this separate blog post.

Other updates made available by Microsoft for the Spectre Variant 2 vulnerability are:

kb4073119

kb4093112

If any of the above updates apply for your version of Windows, please install them. If the updates are already present or are not required; the installation will not proceed when you manually attempt it.

====================
Separately Microsoft have since issued an update, KB4099950 to resolve the issue detailed below affecting the network adapter on Windows 7.

The new update KB4099950 must be installed before KB4088875 and KB4088878 (I assume if this is not the case that KB4088875 and KB4088878 could be uninstalled first?)

If you were experiencing any of the following issues on Windows 7 or Windows Server 2008 R2, please install the above update to resolve them:

====================
A new Ethernet Network Interface Card (NIC) that has default settings may replace the previous NIC and cause network issues.

Static IP address setting are lost.

These symptoms may occur on both physical computers and virtual machine that are running VMware.
====================

Thank you.

====================
Update: 1st April 2018:
====================
Microsoft have issued an out of band update for Windows 7 SP1 64 bit and Windows Server 2008 R2 SP1 64 bit to resolve a regression (an un-intentional coding error resulting in a previously working software feature no longer working, alternative definition here) which introduced an additional elevation of privilege (defined) security vulnerability in the kernel (defined) of these Windows version, please see my new post for further details.

This post has also been updated with further software releases (please see below).

If you have already checked for updates and are not seeing any being offered for your Windows 7 or Windows 8.1 system, please ensure your anti-malware software is up to date. This article explains why this change was implemented by Microsoft. It also provides recommendations of how to resolve the issue of no updates being available. Windows 10 is not affected by this issue.

A known issue of a second network adapter appearing within Windows 7 has also been documented. If this occurs for you with March’s updates, this news article may be of assistance in resolving it. It is anticipated that Microsoft will resolve this issue in this month’s upcoming security updates.

Thank you.

====================
Original post:
====================
On Tuesday, 10th April Microsoft made available their scheduled security updates to resolve 63 vulnerabilities assigned to the same number of CVEs (defined). Microsoft have provided further details are provided within their Security Updates Guide.

There are 3 knowledge base articles detailing potential issues (some of which are pending resolutions) you may experience upon installing these updates. They are listed below for your reference:

4093112

4093118

4093108

====================

Alongside these updates; Adobe released updates for the following products:

Adobe ColdFusion (priority 2, 5x CVEs)

Adobe Digital Editions (priority 3, 2x CVEs)

Adobe Experience Manager (priority 3, 3x CVEs)

Adobe Flash Player v29.0.0.140 (priority 2, 6x CVEs)

Adobe InDesign CC (priority 3, 2x CVEs)

Adobe PhoneGap Push Plugin (priority 3, 1x CVE)

Non-Microsoft browsers should update automatically e.g. Google Chrome should release a browser update in the coming days or will use their component update feature. Microsoft issued a security advisory containing details of their updates

As always; you can monitor the availability of security updates for most your software from the following websites (among others) or use one of the utilities presented on this page (since Secunia PSI will be phased out on the 20th of April):
—————
US Computer Emergency Readiness Team (CERT) (please see the “Information on Security Updates” heading of the “Protecting Your PC” page):

https://www.us-cert.gov/

A further useful source of update related information is the Calendar of Updates. News/announcements of updates in the categories of General SoftwareSecurity Software and Utilities are available on their website. The news/announcements are very timely and (almost always) contain useful direct download links as well as the changes/improvements made by those updates (where possible).

If you like and use it, please also consider supporting that entirely volunteer run website by donating.

====================
For this month’s Microsoft updates, I will prioritize the order of installation below. A useful list of all CVEs for this month is present here:
====================

Microsoft Edge and Internet Explorer (similar to last month multiple versions of Edge and IE affected with many of the CVEs affecting the Microsoft Scripting Engine))

Microsoft Graphics Component consisting of the following 6 CVEs:

CVE-2018-1009

CVE-2018-1010

CVE-2018-1012

CVE-2018-1013

CVE-2018-1015

CVE-2018-1016

Microsoft Wireless Keyboard 850 Security Feature Bypass Vulnerability : described in more detail here.

====================

Separately AMD have issued microcode (defined) updates for Windows 10 Version 1709 to enhance the protection of their customer’s against variant 2 (CVE-2017-5715) of the Spectre vulnerability. Further details of these updates are available within these KB articles: KB4093112 and KB3073119

Please install the remaining updates at your earliest convenience.

As usual; I would recommend backing up the data on any device for which you are installing updates to prevent data loss in the rare event that any update causes unexpected issues. I have provided further details of updates available for other commonly used applications below.

Thank you.

=======================

=======================
Apple Security Updates:
=======================
In late April Apple released updates for Safari, macOS and iOS:

Apple iOS v11.3.1

Apple Safari v11.1

Apple macOS High Sierra v10.13.4

=======================

Please see these links from Apple for advice on backing up your iPhone and iPad.

As always; further details of these updates are available on Apple’s dedicated security updates page.

For advice on how to install updates for Apple devices, please see the steps detailed at the end of this Sophos blog post as well as this link (from my “Protecting Your PC” page).

=======================
7-Zip 18.05
=======================
In late April; version 18.05 of 7-Zip was made available resolving one security vulnerability in it’s RAR packing code. Further details are provided in this linked to blog post.

Other highlights include the inclusion of ASLR on the 32 bit version and high entropy (HE)(defined here and here) ASLR (defined) on the 64 bit version. While the above blog post mentions HEASLR is not enabled, when I tested it with Process Explorer it was showing HEASLR as enabled. That blog post also describes how to add Arbitrary Code Guard (ACG) (defined) protection for 7-Zip on Windows 10. Version 18.01 and later also come with Data Execution Prevention (DEP)(defined here and here).

While 7-Zip is extremely popular as a standalone application; other software such as Malwarebytes Anti-Malware, VMware Workstation and Directory Opus (among many others) all make use of 7-Zip. If you use these software applications or 7-Zip by itself, please update these installed applications to benefit from the resolved vulnerability and the new mitigations.

=======================
Wireshark 2.4.6 and 2.2.14
=======================
v2.4.6: 10 security advisories

v2.2.14: 8 security advisories

The security advisory wnpa-sec-2018-24 applicable to both of the above versions resolves 10 memory leaks (defined).

As per standard process Linux distributions can obtain this update using the operating systems standard package manager (if the latest version is not installed automatically using the package manager you can instead compile the source code (v2.4.6) or v2.2.14). This forum thread and this forum thread may also be helpful to you with installing Wireshark on your Linux based system.

For Mac OS X and Windows, the update is available within the downloads section of the Wireshark website. In addition, a detailed FAQ for Wireshark is available here.

=======================
Wireshark 2.6.0
=======================
While this update is not listed as a security update; it is the latest version of Wireshark within the Stable release channel. The older 2.4.x version did not receive a further update. It is very likely version 2.6 will be required to receive future security updates. Further details are available in the release notes of version 2.6. If possible, please consider upgrading to this version in the near future.

Further installation tips are provided above (as per version 2.4.6 and 2.2.14).

=======================
Oracle:
=======================
Oracle issued updates to resolve 254 vulnerabilities. Further details and installation steps are available here. 14 vulnerabilities affect the Java runtime. 12 of these are remotely exploitable without an attacker needing to obtain a user’s username and password (their credentials).

If you use any of the Oracle products listed here, please install the appropriate security updates as soon as possible.

=======================
OpenSSL
=======================
In mid April; the OpenSSL Foundation issued updates for OpenSSL to address 1x low security vulnerability detailed in this security advisory. To resolve this please update your OpenSSL installations to 1.1.0i or 1.0.2p (as appropriate).

FTP mirrors to obtain the necessary downloads are available from here.

Downloadable Tarballs (compressed/packaged code made for distribution) are available from here.

It should also be possible to use the package manager of a Linux/Unix operating system to update your OpenSSL installation as mentioned within the section titled “Installing updates for Linux distributions” on the “Protecting Your PC” page of this blog.

=======================
A Closer Look at CVE-2018-0950
=======================
While Microsoft have addressed the vulnerability designated as CVE-2018-0950 (defined) this month; Will Dormann, a security researcher with the CERT Coordination Center has demonstrated further mitigations (defined) you may wish to take. These mitigations (listed at the end of his in-depth discussion) will better defend your system(s) against a variant of this vulnerability which still remains relatively easy for an attacker to exploit.

Thank you.

Responding to the Meltdown and Spectre Vulnerabilities

=======================
Please scroll down for more updates to this original post.
=======================
====================
Update: 23rd May 2018:
====================
For information on the Spectre NG vulnerabilities please refer to this new blog post

Thank you.

=======================
Original Post:
=======================
Earlier in January updates for Linux, Apple and Windows were made available to work towards addressing the 3 security vulnerabilities collectively known as Meltdown and Spectre.

Why should these vulnerabilities be considered important?
I’ll provide a brief summary of the two categories of vulnerabilities:

Meltdown (CVE-2017-5754): This is the name of the vulnerability discovered that when exploited by an attacker could allow an application running with standard privileges (not root or elevated privileges) to read memory only intended for access by the kernel.

Spectre (Variant 1: CVE-2017-5753 ; Variant 2: CVE-2017-5715): This is a category of two known vulnerabilities that erode the security boundaries that are present between applications running on a system. Exploitation can allow the gathering of information from applications which could include privileged information e.g. usernames, password and encryption keys etc. This issue can be exploited using a web browser (e.g. Apple Safari, Mozilla Firefox, Google Chrome, Microsoft Edge (or IE) by using it to record the current time at very short intervals. This would be used by an attacker to learn which memory addresses were cached (and which weren’t) allowing the attacker to read data from websites (violating the same-origin policy) or obtain data from the browser.

Browser vendors have responded by reducing the precision of JavaScript timing and making it more unpredictable while other aspects of JavaScript timing (using the SharedArrayBuffer feature) have been disabled.

More in-depth (while still being less technical) descriptions of these issues are available here , here and here.

How can I protect myself from these vulnerabilities?
Since these vulnerabilities are due to the fundamental architecture/design of modern CPUs; it is not possible to fully address them. Instead a combination of software fixes and microcode updates (defined) is more a viable alternative than re-designing the established architecture of modern CPUs.

In-depth lists of updates available from multiple vendors are available here and here. I would suggest glancing at the affected vendors and if you own a device/product from them; checking if you are affected by these vulnerabilities. A list of BIOS (defined) updates from multiple vendors are available here. Google Chrome has a Site Isolation mode that can mitigate these vulnerabilities which will be more comprehensively addressed in Chrome version 64 scheduled for release last this month.

At this time my systems required updates from Google, Mozilla, Microsoft, Apple, VMware, Asus, Lenovo and Nvidia. Many of many existing desktops are unlikely to receive microcode and BIOS updates due to be more than 3 years old. However my Windows 10 laptop has received a BIOS update from the manufacturer.

Are there disadvantages to installing these updates?
While these updates increase security against these vulnerabilities; performance issues and stability issues (Intel and AMD) after the installation of these updates have been reported. These vary in severity but according to Intel and Microsoft the updates will be refined/optimised over time.

Benchmarks (for desktops) made available by TechSpot show negligible impact on most tasks that would stress a CPU (defined). However any work that you perform which makes of large files e.g. databases may be significantly impacted by the performance impact these updates have when accessing files on disk (mechanical and solid state). For laptops the slowdown was felt across almost all workload types. Newer and older silicon were inconsistently impacted. At times even some Intel 8th generation CPUs were impacted more than 5th generation CPUs.

Details of the anticipated performance impact for Linux, Apple macOS (and iOS) and Windows are linked to. Further reports of reduced performance from Intel and Apple devices have also been recorded. Further details of a feature known as PCID (Process-Context Identifiers) within more recent CPUs which will help reduce the performance impact are provided here. For Intel CPUs, 4th generation Core CPUs and later should include it but any CPU manufactured after 2011 should have it (one of my CPUs; a Core i7 2600K has this feature, verified using Sysinternals Coreinfo). A full list of Intel CPUs affected by these vulnerabilities is here.

Conclusion:
With the widely reported stability and performance issues present it is your decision if you install the necessary updates now or wait until further refinements. If you experience issues, please report them to the manufacturers where possible and within online forums if not. More refined updates will only be created if a need to do so is established.

I’m in the process of updating my systems but will benchmark them before and after each updates to determine an impact and make a longer term decision to keep the updates or uninstall them until further versions become available. I’ll update this post as I gather more results.

=======================
Update: 16th January 2018:
=======================
A newly released free utility from Gibson Research (the same website/author as the well-known ShieldsUp firewall tester) named InSpectre can check if your Windows system has been patched against Meltdown and Spectre and can give an indication of how much the performance of your system will be affected by installing and enabling the Windows and/or the BIOS updates.

Please note: I haven’t tried this utility yet but will this weekend (it will help with the tests I’m carrying out (mentioned above). I’ll update this post when I have tried out this utility.

Thanks again.

=======================
Update: 24th January 2018:
=======================
As promised I gathered some early results from a selection of CPUs and the results for all but recent CPUs are evidence they will experience a potentially noticeable performance drop:

====================
CPUs supporting PCID (obtained using Sysinternals Coreinfo):
Intel Core i7 Extreme 980X @ 3.33 GHz
Intel Core i7 2600K @ 3.8 GHz
Intel Core i5 4590T @ 3.3 GHz
Intel Core i7 6500U (laptop CPU) @ 2.5 GHZ

CPUs supporting INVPCID (obtained using Sysinternals Coreinfo):
Intel Core i5 4590T @ 3.3 GHz
Intel Core i7 6500U (laptop CPU) @ 2.5 GHZ
====================

Explanations of the purpose and relevance of the PCID and INVPCID CPU instructions are available from this Ars Technica article. The results from InSpectre only show positive results when both PCID and INVPCID are present backing up the observations within the above linked to Ars Technica article (that the updates take advantage of the performance advantages of these instructions when both are present).

The results from InSpectre back up these findings by stating that the 980X and 2600K will not deliver high performance protection from Meltdown or Spectre. Since my PCs are mainly used for more CPU intensive tasks (rather than disk intensive) e.g. games and Folding@Home; I still don’t expect too much of a performance decrease. The older CPUs are due for replacement.

You may ask; “why am I so concerned with the performance impact of these updates?” The answer is that significant time and investment has been made into the above systems for them to perform at peak performance for the intended tasks I use them for. Performance and security are both very important to me and I believe there should only be a small trade off in performance for better security.

My next step will be to benchmark the CPU, hard disk and GPU of each system before and after installing each update. I will initially do this for the 6500U and 2600K systems and provide these results. The categories of updates are listed below. I will keep you informed of my findings.

Thank you.
====================
Update 1: Software updates from Microsoft for Meltdown and Spectre
Update 2: Firmware update (where available)
Update 3: Nvidia / AMD GPU driver update
====================

=======================
Update: 13th February 2018:
=======================
Sorry for the long delay (I was travelling again for my work). The above benchmarking is now taking place and I will make the results available as soon as possible. Thanks for your understanding.

=======================
Update: 27th February 2018
=======================
Earlier last week Intel made available further microcode updates for more CPUs. These updates seek to address variant 2 of the Spectre vulnerability (CVE-2017-5715). Updates are now available for the CPUs listed below.

As before, please refer to the manufacturer of your motherboard of your system for servers, desktops and laptops or the motherboard manufacturer for any custom built systems you may have to determine if these updates have been made available for your specific systems. Further information for corporate system administrators containing details of the patching process is available within this link (PDF):

  • Kaby Lake (Intel 7th Generation Core CPUs)
  • Coffee Lake (Intel 8th Generation Core CPUs)
  • Further Skylake CPUs (Intel 6th Generation Core CPUs)
  • Intel Core X series (Intel Core i9 CPUs e.g. in the 7900 and 7800 model range)
  • Intel Xeon Scalable (primarily targeted at data centres)
  • Intel Xeon D (primarily targeted at data centres)

Information on patches now available for OpenBSD and FreeBSD are located within the following links:

OpenBSD:
OpenBSD mailing list
The Register: OpenBSD Patch now Available

FreeBSD:
FreeBSD Wiki
Softpedia: Spectre and Meltdown mitigations now available

=======================
Update: 1st April 2018
=======================
As vendors have responded to these vulnerabilities; updates have been released for many products. I will describe these updates in more detail below. Apologies if I have omitted any, this isn’t intentional but the list below should still be useful to you:

=======================
Google ChromeOS:
=======================
Following the release of ChromeOS 64 in February which provided updates against the Meltdown and Spectre vulnerabilities, ChromeOS 65 includes further mitigations against these vulnerabilities including the more efficient Retpoline mitigation for Spectre variant 2.

=======================
Sony Xperia:
=======================
In late February Sony made available updates which include mitigations for Meltdown and Spectre for their Xperia X and Xperia X Compact phones which brings the build number to 34.4.A.2.19

=======================
Microsoft Issues Microcode Updates:
=======================
As previously mentioned when this blog post was first published; updates for the Meltdown and Spectre vulnerabilities are made up of software updates, microcode updates and firmware (BIOS updates) and GPU drivers.

Due to the complexity of updating the firmware of computer systems which is very specific and potentially error prone (if you apply the wrong update to your device it can render it useless, meaning it will need to be repaired/replaced (which is not always possible) Microsoft in early March began to issue microcode driver updates (as VMware describes they can be used as substitutes for firmware updates). Microcode updates have been issued in the past to address CPU reliability issues when used with Windows.

=======================
Intel Firmware Updates:
=======================
As with previous microcode updates issued by Intel in late February; these updates seek to resolve variant 2 of the Spectre vulnerability (CVE-2017-5715).

While Intel has issued these updates; they will be made available separately by the manufacturer of your motherboard of your system for servers, desktops and laptops or the motherboard manufacturer for any custom built systems you may have. You will have to determine from the updates those vendors issue if they are available for the products that you own.

Unfortunately not all systems will receive these updates e.g. most recent system was assembled in 2014 and has not received any updates from the vendor; the vendor has issued updates on their more recent motherboards. Only my 2016 laptop was updated. This means that for me; replacing the systems gradually is the only means of addressing variant 2 of the Spectre vulnerability.

Intel’s updates are for the Broadwell (5th generation CPUs i.e. 5000 series) and Haswell (4th generation CPUs i.e. 4000 series).

=======================
Microsoft Surface Pro:
=======================
Earlier this week Microsoft released firmware updates for their Surface Pro which mitigate the Meltdown and Spectre vulnerabilities. This link provides further details and how to install the updates.

=======================
Microsoft Issues Further Security Update on the 29th March:
=======================
As noted in my separate post; please refer to that post for details of a security update for Windows 7 SP1 64 bit and Windows Server 2008 R2 SP1 64 bit that resolve a regression (an un-intentional coding error resulting in a previously working software feature no longer working, alternative definition here) which introduced an additional elevation of privilege (defined) security vulnerability in the kernel (defined) of those Windows versions.

=======================
Microsoft Offers Bug Bounty for Meltdown and Spectre vulnerabilities:
=======================
Microsoft have announced bug bounties from $5000 to $250,000 to security researchers who can locate and provide details of exploits for these vulnerabilities upon Windows, Azure and Microsoft Edge.

If such a programme is successful it could prevent another instance of needing to patch further related vulnerabilities after the issues have been publicly disclosed (defined). This is sure to assist the system administrators of large organisations who currently in the process of deploying the existing updates or who may be testing systems on a phased basis to ensure performance is not compromised too much.

Further details are available from this link.

=======================
Update: 6th April 2018
=======================
Earlier this week, Intel issued a further progress update for the deployment of further microcode for their CPUs.

A further 5 families of CPUs have now completed testing and microcode updates are available. These families are:

    • Arrandale
    • Clarkdale
    • Lynnfield
    • Nehalem
    • Westmere

==================
However a further 9 families will not receive such updates for the reasons listed below. Those families are:

      • Micro-architectural characteristics that preclude a practical implementation of features mitigating [Spectre] Variant 2 (CVE-2017-5715)
      • Limited Commercially Available System Software support
      • Based on customer inputs, most of these products are implemented as “closed systems” and therefore are expected to have a lower likelihood of exposure to these vulnerabilities.

==================

      • Bloomfield
      • Clarksfield
      • Gulftown
      • Harpertown Xeon
      • Jasper Forest
      • Penryn
      • SoFIA 3GR
      • Wolfdale
      • Yorkfield

This announcement from Intel means my Intel Core i7 Extreme 980X (from 2010) won’t receive an update. This system isn’t used very much on the internet and so the impact is limited. I am hoping to replace this system in the near future too.

Recommendations:

Please review the updated PDF made available by Intel (I can upload the PDF to this blog if Intel place it behind an account which requires sign in. At this time the PDF link still works).

As before; please monitor the websites for the manufacturer of your system for servers, desktops and laptops or the motherboard manufacturer for any custom built systems you may have to determine if these updates have been made available for your specific systems.

Thank you.

==================
BranchScope Vulnerability Disclosed:
In a related story; four security researchers from different universities responsibly disclosed (defined) a new side channel attack affecting Intel CPUs. This attack has the potential to obtain sensitive information from vulnerable systems (a similar result from the existing Meltdown and Spectre vulnerabilities).

Further details of this attack named “BranchScope” are available in this Softpedia article and this paper from the researchers. Within the above article Intel responded to this attack stating that this vulnerability is similar to known side channel and existing software mitigations (defined) are effective against this vulnerability. Their precise wording is provided below.

Thank you.

==================
An Intel spokesperson has provided the following statement:

“We have been working with these researchers and have determined the method they describe is similar to previously known side channel exploits. We anticipate that existing software mitigations for previously known side channel exploits, such as the use of side channel resistant cryptography, will be similarly effective against the method described in this paper. We believe close partnership with the research community is one of the best ways to protect customers and their data, and we are appreciative of the work from these researchers.”
==================

=======================
Update: 13th April 2018
=======================
AMD have issued microcode (defined) updates for Windows 10 Version 1709 to enhance the protection of their customer’s against variant 2 (CVE-2017-5715) of the Spectre vulnerability. Further details of these updates are available within these KB articles: KB4093112 and KB3073119

Thank you.

=======================
Update: 18th May 2018
=======================
Please refer to the beginning of the May and April security update summaries for further updates related to addressing Spectre variant 2 (v2).